❓
물음표살인마 블로그
  • README
  • ALGORITHM
    • Sieve of Eratosthenes
    • Round Up
    • Binary Search
    • Union Find
    • Sorting Array
    • Lcm, Gcd
  • TechTalk Review
    • Template
  • Books
    • CS Note for Interview
      • Ch1. Design Pattern & Programming paradigm
        • 1.1.1 Singleton Pattern
        • 1.1.2 Factory Pattern
        • 1.1.4 Observer Pattern
        • 1.1.5 Proxty Pattern & Proxy Server
        • 1.1.8 Model-View-Controller Pattern
        • 1.2.1 Declarative and Functional Programming
        • 1.2.2 Object Oriented Programming
      • Ch2. Network
        • 2.2.1 TCP/IP Four-Layer Model
        • 2.2.1-1 TCP 3, 4 way handshake
        • 2.3 Network Devices L4, L7
        • 2.4.1 ARP, RARP
        • 2.4.2 Hop By Hop Communication
        • 2.4.3 IP Addressing Scheme
      • Ch3. Operating System
        • 3.1.1 Roles and Structure of Operating Systems
        • 3.2.1 Memory Hierarchy
        • 3.2.2 Memory Management
        • 3.3.1 Processes and Compilation Process
        • 3.3.3 Memory Structure of a Process
        • 3.3.4 Process Control Block (PCB)
        • 3.3.5 Multiprocessing
        • 3.3.6 Threads and Multithreading
        • 3.3.7 Shared Resources and Critical Sections
        • 3.3.8 Deadlock
        • 3.4 CPU Scheduling Algorithm
      • Ch4. Database
        • 4.1 Database Basic
        • 4.2 Normalization
        • 4.3 Transaction and Integrity
        • 4.4 Types of Databases
        • 4.5 Indexes
        • 4.6 Types of Joins
        • 4.7 Principles of Joins
      • Ch5. Data Structure
    • Learning the Basics of Large-Scale System Design through Virtual Interview Cases
      • 1. Scalability based on user counts(1/2)
      • 1. Scalability based on user counts(2/2)
      • 2.Back-of-the-envelope estimation
      • 3. Strategies for System Design Interviews
      • 4. Rate Limiter
      • 5. Consistent Hashing
      • 6. Key-Value System Design
      • 7. Designing a Unique ID Generator for Distributed Systems
      • 8. Designing a URL Shortener
      • 9. Designing a Web Crawler
      • 10. Notification System Design
      • 11. Designing a News Feed System
      • 12. Chat System Design
      • 13. AutoComplete
      • 14. Design YouTube
      • 15. Design Google Drive
      • Loadbalancer Algorithms
      • Cache tier
      • CDN, Content Delivery Network
      • Stateless Web tier
    • Computer System A programmer's perspective
    • Effective Java
      • Item 1. Consider Static Factory Methods Instead of Constructors
      • Item 2. Consider a Builder When Faced with Many Constructor Parameters
      • Item 3. Ensure Singleton with Private Constructor or Enum Type
      • Item 4. Enforce Noninstantiability with a Private Constructor
      • Item 5. Prefer Dependency Injection to Hardwiring Resources
      • Item 6. Avoid Creating Unnecessary Objects
      • Item 7. Eliminate Obsolete Object References
      • Item 8. Avoid Finalizers and Cleaners
      • Item 9.Prefer try-with-resources to try-finally
      • Item10. Adhering to General Rules When Overriding equals
        • Handling Transitivity Issues
        • Ensuring Consistency
      • Item11. Override hashCode When You Override equals
      • Item12. Always Override toString
        • Always Override toString
      • Item13. Override Clone Judiciously
      • Item14. Consider Implementing Comparable
      • Item15. Minimize the Accessibility of Classes and Members
      • Item16. Accessor Methods Over Public Fields
      • Item17. Minimize Mutability
      • Item18. Composition over inherentance
      • Item19. Design and Document for Inheritance, or Else Prohibit It
      • Item20. Prefer Interfaces to Abstract Classes
      • Item21. Design Interfaces with Implementations in Mind
      • Item22. Use Interfaces Only to define Types
      • Item23. Prefer Class Hierarchies to Tagged Classes
      • Item24. Favor Static Member Classes Over Non-Static
      • Item28. Use Lists Instead of Arrays
      • Item29. Prefer Generic Types
      • Item30. Favor Generic Methods
    • Head First Design Patterns
      • Ch1. Strategy Pattern
      • Ch2. Observer Pattern
        • Ver1. Ch2. Observer Pattern
      • Ch3. Decorator Pattern
        • Ch3. Decorator Pattern
      • Ch4. Factory Pattern
      • Ch5. Singleton Pattern
      • Ch6. Command Pattern
      • Ch7. Adapter and Facade Pattern
      • Ch8. Template Method Pattern
    • Digging Deep into JVM
      • Chapter 2. Java Memory Area & Memory Overflow
      • Chapter 3. Garbage Collector & Memory Allocation Strategy (1/2)
      • Chapter 3. Garbage Collector & Memory Allocation Strategy (2/2)
      • Chapter 5. Optimization Practice
      • Chapter 6. Class file structure
      • Chapter 8. Bytecode Executor Engine (1/2)
  • Interview Practices
    • Restful API Practices
      • Url Shortener API
      • Event Ticket Reservation API
      • Course Management API
      • Search posts by tags API
      • Online Code platform API
      • Simple Task Management API
      • Event Participation API
      • Review System API
      • Car management API
      • Online Library
    • Tech Review
      • if(kakao)
        • Kakao Account Cache Migration / if(kakao)2022
        • Improving the Anomaly Detection System for KakaoTalk Messaging Metrics / if(kakao) 2022
        • Standardizing API Case Handling Without Redeployment / if(kakaoAI)2024
        • JVM warm up / if(kakao)2022
    • Naver Computer Science
      • Process & Thread
      • TCP & UDP
      • Spring & Servlet
      • Filter & Interceptor & AOP
      • Equals() & ==
      • Dependency Injection
      • Object Oriented Programming
  • F-Lab
    • Week1
      • Client & Server
      • HTTP
      • TCP/UDP
      • REST API
      • Questions
        • Object Oriented Programming
        • HTTP
        • Process & Thread
        • Data Structure
    • Week2
      • OSI 7 layer
      • Web vs WAS
    • Week3
      • RDB vs NoSQL
      • RDB Index
      • Cache
      • Redis
      • Messaging Queue
    • Week4
      • Project - Ecommerce
    • Week5
      • ERD - 1
    • Week6
      • Ecommerce - 2
      • Role
      • pw hashing && Salt
      • CreatedAt, ModifiedAt
      • JWT
      • Copy of ERD - 1
    • Week7
      • Vault (HashiCorp Vault)
    • Week 8
      • Api Endpoints
    • Week10
      • Product Create Workflow
  • TOY Project
    • CodeMentor
      • Implementation of Kafka
      • Project Improvement (Architectural Enhancements)
      • Communication between servers in msa
  • JAVA
    • MESI protocol in CAS
    • CAS (Compare and Set)
    • BlockingQueue
    • Producer & Consumer
    • Synchronized && ReentrantLock
    • Memory Visibility
    • Checked vs Unchecked Exception
    • Thread
    • Batch delete instead of Cascade
    • Java Questions
      • Week 1(1/2) - Basic Java
      • Week 1(2/2) - OOP
      • Week 2(1/2) - String, Exception, Generic
      • Week2(2/2) Lambda, Stream, Annotation, Reflection
      • Week3(1/2) Collections
      • Week3(2/2) Threads
      • Week4 Java Concurrency Programming
      • Week5 JVM & GC
    • Java 101
      • JVM Structure
      • Java Compiles and Execution Method
      • Override, Overload
      • Interface vs Abstract Class
      • Primitive vs Object Type
      • Identity and equality
      • String, StringBuilder, StringBuffer
      • Checked Exceptions and Unchecked Exceptions
      • Java 8 methods
      • Try-with-reources
      • Strong Coupling and Loose Coupling
      • Serialization and Deserialization
      • Concurrency Programming in Java
      • Mutable vs Immutable
      • JDK vs JRE
  • SPRING
    • DIP. Dependency Inversion Principal
    • Ioc container, di practice
    • @Transactional
    • Proxy Pattern
    • Strategy Pattern
    • Template Method Pattern
    • using profile name as variable
    • Spring Questions
      • Spring Framework
      • Spring MVC & Web Request
      • AOP (Aspect-Oriented Programming)
      • Spring Boot
      • ORM & Data Access
      • Security
      • ETC
  • DATABASE
    • Enhancing Query Performance & Stability - User list
    • Ensuring Data Consistency, Atomicity and UX Optimization (feat.Firebase)
    • Redis: Remote Dictionary Server
    • Database Questions
      • Week1 DBMS, RDBMS basics
      • Week2 SQL
      • Week3 Index
      • Week4 Anomaly, Functional Dependency, Normalization
      • Week5 DB Transaction, Recovery
    • Normalization
      • 1st Normal Form
      • 2nd Normal Form
      • 3rd Normal Form
  • NETWORK
    • HTTP & TCP head of line blocking
    • HTTP 0.9-3.0
    • Blocking, NonBlocking and Sync, Async
    • Network Questions
      • Week1 Computer Network Basic
      • Week2(1/3) Application Layer Protocol - HTTP
      • Week2(2/3) Application Layer Protocol - HTTPS
      • Week2(3/3) Application Layer Protocol - DNS
      • Week3 Application Layer
      • Week4 Transport Layer - UDP, TCP
      • Week5 Network Layer - IP Protocol
    • Network 101
      • https://www.google.com
      • TCP vs UDP
      • Http vs Https
      • TLS Handshake 1.2
      • HTTP Method
      • CORS & SOP
      • Web Server Software
  • OS
    • Operating System Questions
      • Week1 OS & How Computer Systems Work
      • Week2(1/2) Process
      • Week2(2/2) Thread
      • Week3 CPU Scheduling
      • Week4 Process Synchronize
      • Week5 Virtual Memory
    • Operating System 101
      • Operating system
        • The role of the operating system
        • The composition of the operating system.
      • Process
        • In Linux, are all processes except the initial process child processes?
        • Zombie process, orphan process
        • (Linux) Daemon process
        • Process address space
        • Where are uninitialized variables stored?
        • Determination of the size of the Stack and Heap
        • Access speed of Stack vs Heap
        • Reason for memory space partitioning
        • Process of compiling a process
        • sudo kill -9 $CURRENT_PID
      • Thread
        • Composition of a thread's address space
      • Process vs Thread
        • Creation of processes and threads in Linux
      • Multiprocessing
        • Web Browser
        • Implementation of multiprocessing
        • Application areas of multiprocessing
      • Multithreading
        • Application areas of multithreading
      • Interrupt
        • HW / SW Interrupt
        • Method of handling interrupts
        • Occurrence of two or more interrupts simultaneously
      • Polling
      • Dual Mode
        • Reason for distinguishing between user mode and kernel mode
      • System call
        • Differentiation between system calls
        • Types of system calls
        • Execution process of a system call
      • Process Control Block (PCB)
        • PCB의 구조
        • 쓰레드는 PCB를 갖고 있을까?
        • 프로세스 메모리 구조
      • Context switching
        • Timing of context switching
        • Registers saved during context switching
        • Context switching in processes
        • Context switching in threads
        • Difference between context switching in processes and threads
        • Information of the current process during context switching
      • Interprocess Communication (IPC)
        • Cases where IPC is used
        • Process address space in IPC Shared Memory technique
        • Types of IPC
  • COMPUTER SCIENCE
    • Computer Architecture 101
      • 3 components of a computer
      • RAM vs ROM
      • CPU vs GPU
      • SIMD
      • Two's complement
      • Harvard Architecture vs. von Neumann Architecture
      • The structure of a CPU.
      • Instruction cycle (CPU operation method)
      • Instruction pipelining
      • Bus
      • Memory area
      • Memory hierarchy structure
        • Reason for using memory hierarchy structure
      • Cache memory
      • L1, L2, L3 Cache
      • Locality of reference (cache)
      • Fixed-point vs Floating-point
        • epresentation of infinity and NaN (Not a Number) in floating-point
      • RISC vs CISC
      • Hamming code
      • Compiler
      • Linking
      • Compiler vs Interpreter
      • Mutex vs Semaphore
      • 32bit CPU and 64bit CPU
      • Local vs Static Variable
      • Page
  • Programming Paradigm
    • Declarative vs Imperative
  • JPA, QueryDsl
    • why fetchResults() is deprecated
  • PYTHON
    • Icecream
  • FASTAPI
    • Template Page
  • LINUX
    • Template Page
  • DATA STRUCTURE
    • Counting Sort
    • Array vs Linked List
  • GIT, Github
    • git clone, invalid path error
  • INFRA
    • Template Page
  • AWS
    • Server Log Archive Pipeline
    • Image Processing using Lambda
  • DOCKER
    • Docker and VM
    • Python Executable Environment
    • Docker commands
  • docker-compose
    • Kafka, Multi Broker
  • KUBERNATES
    • !Encountered Errors
      • my-sql restarts
      • kafka producer: disconnected
    • Kubernetes Components
    • Helm
      • Helm commands
    • Pod network
    • Service network
      • deployment.yaml
      • services.yaml
    • Service type
      • Cluster IP
      • NodePort
    • service-name-headless?
    • kube-proxy
  • GraphQL
    • Template Page
  • WEB
    • Template Page
  • Reviews
    • Graphic Intern Review
    • Kakao Brain Pathfinder Review
    • JSCODE 자바 1기 Review
  • 😁Dev Jokes
    • Image
      • Plot twist
      • Priorities
      • SQL join guide
      • Google is generous
      • Genie dislikes cloud
      • buggy bugs
      • last day of unpaid internship
      • what if clients know how to inspect
      • its just game
      • how i wrote my achievement on resume
      • self explanatory
      • chr(sum(range(ord(min(str(not))))))
Powered by GitBook
On this page
  • 선언형 프로그래밍
  • 함수형 프로그래밍
  • 함수형 프로그래밍의 특징
  • 함수형 프로그래밍의 장점
  • 함수형 프로그래밍의 단점
  • 결론
  1. Books
  2. CS Note for Interview
  3. Ch1. Design Pattern & Programming paradigm

1.2.1 Declarative and Functional Programming

1.2.1 선언형과 함수형 프로그래밍

선언형 프로그래밍

선언형 프로그래밍(declarative programming)은 프로그램이 무엇을 하는지에 집중하는 패러다임입니다. 즉, 프로그램의 목적을 명확히 기술하며, 구현 세부 사항은 감추는 방식입니다. 이는 절차적 프로그래밍과 대조되는 개념으로, 절차적 프로그래밍은 어떻게 할 것인지에 집중합니다. 선언형 프로그래밍의 주요 특징은 코드가 더 간결하고 직관적이라는 점입니다.

선언형 프로그래밍 예시

스프링 부트(Spring Boot)에서는 데이터베이스에서 데이터를 조회하고 이를 REST API로 제공하는 예시를 보겠습니다.

엔티티(Entity) 클래스

@Entity
public class Product {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;
    private String name;
    private double price;

    // getters and setters
}

리포지토리(Repository) 인터페이스

public interface ProductRepository extends JpaRepository<Product, Long> {
    List<Product> findByName(String name);
}

서비스(Service) 클래스

@Service
public class ProductService {
    private final ProductRepository productRepository;

    public ProductService(ProductRepository productRepository) {
        this.productRepository = productRepository;
    }

    public List<Product> getProductsByName(String name) {
        return productRepository.findByName(name);
    }
}

컨트롤러(Controller) 클래스

@RestController
@RequestMapping("/products")
public class ProductController {
    private final ProductService productService;

    public ProductController(ProductService productService) {
        this.productService = productService;
    }

    @GetMapping("/search")
    public List<Product> searchProducts(@RequestParam String name) {
        return productService.getProductsByName(name);
    }
}

위 예시에서 각 클래스는 특정 역할에 집중하여 선언형 방식으로 작성되었습니다. 리포지토리 클래스는 데이터베이스 액세스를, 서비스 클래스는 비즈니스 로직을, 컨트롤러 클래스는 HTTP 요청 처리를 담당합니다.

함수형 프로그래밍

함수형 프로그래밍(functional programming)은 선언형 프로그래밍의 한 종류로, 프로그램을 함수의 집합으로 구성하는 패러다임입니다. 함수형 프로그래밍의 핵심은 순수 함수와 고차 함수입니다.

순수 함수 (Pure Function)

순수 함수는 동일한 입력에 대해 항상 동일한 출력을 반환하며, 함수 외부의 상태를 변경하지 않는 함수입니다. 이는 함수형 프로그래밍의 기본 단위이며, 코드의 예측 가능성과 안정성을 높입니다.

순수 함수 예시

스프링 부트 프로젝트에서 순수 함수의 예시는 다음과 같습니다.

@Component
public class MathUtils {

    public int add(int a, int b) {
        return a + b;
    }

    public int multiply(int a, int b) {
        return a * b;
    }
}

위 예시에서 MathUtils 클래스의 add와 multiply 메서드는 모두 순수 함수입니다. 동일한 입력에 대해 항상 동일한 출력을 반환하며, 외부 상태를 변경하지 않습니다.

고차 함수 (Higher-Order Function)

고차 함수는 함수를 인자로 받거나 함수를 반환하는 함수입니다. 이는 함수형 프로그래밍의 중요한 특징 중 하나로, 코드의 재사용성을 높이고 모듈화를 용이하게 합니다.

고차 함수 예시

다음은 스프링 부트 프로젝트에서 고차 함수를 사용하는 예시입니다.

@Component
public class DiscountService {

    public Function<Double, Double> getDiscountFunction(double discountRate) {
        return (price) -> price * (1 - discountRate);
    }
}

DiscountService 클래스의 getDiscountFunction 메서드는 할인율을 인자로 받아 가격에 적용하는 함수를 반환합니다.

컨트롤러에서의 사용

@RestController
@RequestMapping("/discounts")
public class DiscountController {
    private final DiscountService discountService;

    public DiscountController(DiscountService discountService) {
        this.discountService = discountService;
    }

    @GetMapping("/apply")
    public double applyDiscount(@RequestParam double price, @RequestParam double rate) {
        Function<Double, Double> discountFunction = discountService.getDiscountFunction(rate);
        return discountFunction.apply(price);
    }
}

위 예시에서 applyDiscount 메서드는 DiscountService의 고차 함수를 사용하여 주어진 가격에 할인율을 적용합니다.

함수형 프로그래밍의 특징

불변성 (Immutability)

함수형 프로그래밍에서는 데이터의 불변성을 강조합니다. 이는 상태 변경을 피하고, 데이터를 변경할 필요가 있을 때는 기존 데이터를 복사하여 새로운 데이터를 생성합니다.

불변성 예시

@Component
public class ProductUtils {

    public List<Product> applyDiscount(List<Product> products, double discountRate) {
        return products.stream()
                .map(product -> {
                    Product discountedProduct = new Product();
                    discountedProduct.setId(product.getId());
                    discountedProduct.setName(product.getName());
                    discountedProduct.setPrice(product.getPrice() * (1 - discountRate));
                    return discountedProduct;
                })
                .collect(Collectors.toList());
    }
}

위 예시에서 applyDiscount 메서드는 원본 리스트 products를 변경하지 않고, 각 제품에 할인율을 적용한 새로운 리스트를 반환합니다.

고차 함수의 사용

고차 함수는 함수형 프로그래밍에서 빈번하게 사용됩니다. 이는 코드의 재사용성과 가독성을 높이는 데 도움이 됩니다.

고차 함수 사용 예시

@Component
public class ProductFilter {

    public List<Product> filterProducts(List<Product> products, Predicate<Product> predicate) {
        return products.stream()
                .filter(predicate)
                .collect(Collectors.toList());
    }
}

위 예시에서 filterProducts 메서드는 Predicate를 인자로 받아, 해당 조건을 만족하는 제품만을 필터링하여 반환합니다.

함수형 프로그래밍의 장점

  1. 모듈화: 함수 단위로 프로그램을 분할하여 재사용성과 유지보수성을 높입니다.

  2. 예측 가능성: 순수 함수의 사용으로 함수의 결과를 예측할 수 있습니다.

  3. 테스트 용이성: 순수 함수는 독립적이기 때문에 테스트가 용이합니다.

  4. 병렬 처리: 상태를 변경하지 않으므로 병렬 처리와 같은 최적화가 용이합니다.

함수형 프로그래밍의 단점

  1. 학습 곡선: 함수형 프로그래밍의 개념을 이해하고 익히는 데 시간이 걸릴 수 있습니다.

  2. 실행 성능: 불변성을 유지하기 위해 데이터를 복사하는 과정에서 실행 성능이 저하될 수 있습니다.

  3. 디버깅 어려움: 함수가 중첩되거나 고차 함수가 많이 사용될 경우 디버깅이 어려울 수 있습니다.

결론

함수형 프로그래밍은 선언형 프로그래밍의 한 종류로, 순수 함수와 고차 함수를 중심으로 프로그램을 구성하는 패러다임입니다. 이는 코드의 재사용성, 가독성, 예측 가능성을 높이며, 병렬 처리와 같은 최적화에도 유리합니다.

Previous1.1.8 Model-View-Controller PatternNext1.2.2 Object Oriented Programming

Last updated 10 months ago