❓
물음표살인마 블로그
  • README
  • ALGORITHM
    • Sieve of Eratosthenes
    • Round Up
    • Binary Search
    • Union Find
    • Sorting Array
    • Lcm, Gcd
  • TechTalk Review
    • Template
  • Books
    • CS Note for Interview
      • Ch1. Design Pattern & Programming paradigm
        • 1.1.1 Singleton Pattern
        • 1.1.2 Factory Pattern
        • 1.1.4 Observer Pattern
        • 1.1.5 Proxty Pattern & Proxy Server
        • 1.1.8 Model-View-Controller Pattern
        • 1.2.1 Declarative and Functional Programming
        • 1.2.2 Object Oriented Programming
      • Ch2. Network
        • 2.2.1 TCP/IP Four-Layer Model
        • 2.2.1-1 TCP 3, 4 way handshake
        • 2.3 Network Devices L4, L7
        • 2.4.1 ARP, RARP
        • 2.4.2 Hop By Hop Communication
        • 2.4.3 IP Addressing Scheme
      • Ch3. Operating System
        • 3.1.1 Roles and Structure of Operating Systems
        • 3.2.1 Memory Hierarchy
        • 3.2.2 Memory Management
        • 3.3.1 Processes and Compilation Process
        • 3.3.3 Memory Structure of a Process
        • 3.3.4 Process Control Block (PCB)
        • 3.3.5 Multiprocessing
        • 3.3.6 Threads and Multithreading
        • 3.3.7 Shared Resources and Critical Sections
        • 3.3.8 Deadlock
        • 3.4 CPU Scheduling Algorithm
      • Ch4. Database
        • 4.1 Database Basic
        • 4.2 Normalization
        • 4.3 Transaction and Integrity
        • 4.4 Types of Databases
        • 4.5 Indexes
        • 4.6 Types of Joins
        • 4.7 Principles of Joins
      • Ch5. Data Structure
    • Learning the Basics of Large-Scale System Design through Virtual Interview Cases
      • 1. Scalability based on user counts(1/2)
      • 1. Scalability based on user counts(2/2)
      • 2.Back-of-the-envelope estimation
      • 3. Strategies for System Design Interviews
      • 4. Rate Limiter
      • 5. Consistent Hashing
      • 6. Key-Value System Design
      • 7. Designing a Unique ID Generator for Distributed Systems
      • 8. Designing a URL Shortener
      • 9. Designing a Web Crawler
      • 10. Notification System Design
      • 11. Designing a News Feed System
      • 12. Chat System Design
      • 13. AutoComplete
      • 14. Design YouTube
      • 15. Design Google Drive
      • Loadbalancer Algorithms
      • Cache tier
      • CDN, Content Delivery Network
      • Stateless Web tier
    • Computer System A programmer's perspective
    • Effective Java
      • Item 1. Consider Static Factory Methods Instead of Constructors
      • Item 2. Consider a Builder When Faced with Many Constructor Parameters
      • Item 3. Ensure Singleton with Private Constructor or Enum Type
      • Item 4. Enforce Noninstantiability with a Private Constructor
      • Item 5. Prefer Dependency Injection to Hardwiring Resources
      • Item 6. Avoid Creating Unnecessary Objects
      • Item 7. Eliminate Obsolete Object References
      • Item 8. Avoid Finalizers and Cleaners
      • Item 9.Prefer try-with-resources to try-finally
      • Item10. Adhering to General Rules When Overriding equals
        • Handling Transitivity Issues
        • Ensuring Consistency
      • Item11. Override hashCode When You Override equals
      • Item12. Always Override toString
        • Always Override toString
      • Item13. Override Clone Judiciously
      • Item14. Consider Implementing Comparable
      • Item15. Minimize the Accessibility of Classes and Members
      • Item16. Accessor Methods Over Public Fields
      • Item17. Minimize Mutability
      • Item18. Composition over inherentance
      • Item19. Design and Document for Inheritance, or Else Prohibit It
      • Item20. Prefer Interfaces to Abstract Classes
      • Item21. Design Interfaces with Implementations in Mind
      • Item22. Use Interfaces Only to define Types
      • Item23. Prefer Class Hierarchies to Tagged Classes
      • Item24. Favor Static Member Classes Over Non-Static
      • Item28. Use Lists Instead of Arrays
      • Item29. Prefer Generic Types
      • Item30. Favor Generic Methods
    • Head First Design Patterns
      • Ch1. Strategy Pattern
      • Ch2. Observer Pattern
        • Ver1. Ch2. Observer Pattern
      • Ch3. Decorator Pattern
        • Ch3. Decorator Pattern
      • Ch4. Factory Pattern
      • Ch5. Singleton Pattern
      • Ch6. Command Pattern
      • Ch7. Adapter and Facade Pattern
      • Ch8. Template Method Pattern
    • Digging Deep into JVM
      • Chapter 2. Java Memory Area & Memory Overflow
      • Chapter 3. Garbage Collector & Memory Allocation Strategy (1/2)
      • Chapter 3. Garbage Collector & Memory Allocation Strategy (2/2)
      • Chapter 5. Optimization Practice
      • Chapter 6. Class file structure
      • Chapter 8. Bytecode Executor Engine (1/2)
  • Interview Practices
    • Restful API Practices
      • Url Shortener API
      • Event Ticket Reservation API
      • Course Management API
      • Search posts by tags API
      • Online Code platform API
      • Simple Task Management API
      • Event Participation API
      • Review System API
      • Car management API
      • Online Library
    • Tech Review
      • if(kakao)
        • Kakao Account Cache Migration / if(kakao)2022
        • Improving the Anomaly Detection System for KakaoTalk Messaging Metrics / if(kakao) 2022
        • Standardizing API Case Handling Without Redeployment / if(kakaoAI)2024
        • JVM warm up / if(kakao)2022
    • Naver Computer Science
      • Process & Thread
      • TCP & UDP
      • Spring & Servlet
      • Filter & Interceptor & AOP
      • Equals() & ==
      • Dependency Injection
      • Object Oriented Programming
  • F-Lab
    • Week1
      • Client & Server
      • HTTP
      • TCP/UDP
      • REST API
      • Questions
        • Object Oriented Programming
        • HTTP
        • Process & Thread
        • Data Structure
    • Week2
      • OSI 7 layer
      • Web vs WAS
    • Week3
      • RDB vs NoSQL
      • RDB Index
      • Cache
      • Redis
      • Messaging Queue
    • Week4
      • Project - Ecommerce
    • Week5
      • ERD - 1
    • Week6
      • Ecommerce - 2
      • Role
      • pw hashing && Salt
      • CreatedAt, ModifiedAt
      • JWT
      • Copy of ERD - 1
    • Week7
      • Vault (HashiCorp Vault)
    • Week 8
      • Api Endpoints
    • Week10
      • Product Create Workflow
  • TOY Project
    • CodeMentor
      • Implementation of Kafka
      • Project Improvement (Architectural Enhancements)
      • Communication between servers in msa
  • JAVA
    • MESI protocol in CAS
    • CAS (Compare and Set)
    • BlockingQueue
    • Producer & Consumer
    • Synchronized && ReentrantLock
    • Memory Visibility
    • Checked vs Unchecked Exception
    • Thread
    • Batch delete instead of Cascade
    • Java Questions
      • Week 1(1/2) - Basic Java
      • Week 1(2/2) - OOP
      • Week 2(1/2) - String, Exception, Generic
      • Week2(2/2) Lambda, Stream, Annotation, Reflection
      • Week3(1/2) Collections
      • Week3(2/2) Threads
      • Week4 Java Concurrency Programming
      • Week5 JVM & GC
    • Java 101
      • JVM Structure
      • Java Compiles and Execution Method
      • Override, Overload
      • Interface vs Abstract Class
      • Primitive vs Object Type
      • Identity and equality
      • String, StringBuilder, StringBuffer
      • Checked Exceptions and Unchecked Exceptions
      • Java 8 methods
      • Try-with-reources
      • Strong Coupling and Loose Coupling
      • Serialization and Deserialization
      • Concurrency Programming in Java
      • Mutable vs Immutable
      • JDK vs JRE
  • SPRING
    • DIP. Dependency Inversion Principal
    • Ioc container, di practice
    • @Transactional
    • Proxy Pattern
    • Strategy Pattern
    • Template Method Pattern
    • using profile name as variable
    • Spring Questions
      • Spring Framework
      • Spring MVC & Web Request
      • AOP (Aspect-Oriented Programming)
      • Spring Boot
      • ORM & Data Access
      • Security
      • ETC
  • DATABASE
    • Enhancing Query Performance & Stability - User list
    • Ensuring Data Consistency, Atomicity and UX Optimization (feat.Firebase)
    • Redis: Remote Dictionary Server
    • Database Questions
      • Week1 DBMS, RDBMS basics
      • Week2 SQL
      • Week3 Index
      • Week4 Anomaly, Functional Dependency, Normalization
      • Week5 DB Transaction, Recovery
    • Normalization
      • 1st Normal Form
      • 2nd Normal Form
      • 3rd Normal Form
  • NETWORK
    • HTTP & TCP head of line blocking
    • HTTP 0.9-3.0
    • Blocking, NonBlocking and Sync, Async
    • Network Questions
      • Week1 Computer Network Basic
      • Week2(1/3) Application Layer Protocol - HTTP
      • Week2(2/3) Application Layer Protocol - HTTPS
      • Week2(3/3) Application Layer Protocol - DNS
      • Week3 Application Layer
      • Week4 Transport Layer - UDP, TCP
      • Week5 Network Layer - IP Protocol
    • Network 101
      • https://www.google.com
      • TCP vs UDP
      • Http vs Https
      • TLS Handshake 1.2
      • HTTP Method
      • CORS & SOP
      • Web Server Software
  • OS
    • Operating System Questions
      • Week1 OS & How Computer Systems Work
      • Week2(1/2) Process
      • Week2(2/2) Thread
      • Week3 CPU Scheduling
      • Week4 Process Synchronize
      • Week5 Virtual Memory
    • Operating System 101
      • Operating system
        • The role of the operating system
        • The composition of the operating system.
      • Process
        • In Linux, are all processes except the initial process child processes?
        • Zombie process, orphan process
        • (Linux) Daemon process
        • Process address space
        • Where are uninitialized variables stored?
        • Determination of the size of the Stack and Heap
        • Access speed of Stack vs Heap
        • Reason for memory space partitioning
        • Process of compiling a process
        • sudo kill -9 $CURRENT_PID
      • Thread
        • Composition of a thread's address space
      • Process vs Thread
        • Creation of processes and threads in Linux
      • Multiprocessing
        • Web Browser
        • Implementation of multiprocessing
        • Application areas of multiprocessing
      • Multithreading
        • Application areas of multithreading
      • Interrupt
        • HW / SW Interrupt
        • Method of handling interrupts
        • Occurrence of two or more interrupts simultaneously
      • Polling
      • Dual Mode
        • Reason for distinguishing between user mode and kernel mode
      • System call
        • Differentiation between system calls
        • Types of system calls
        • Execution process of a system call
      • Process Control Block (PCB)
        • PCB의 구조
        • 쓰레드는 PCB를 갖고 있을까?
        • 프로세스 메모리 구조
      • Context switching
        • Timing of context switching
        • Registers saved during context switching
        • Context switching in processes
        • Context switching in threads
        • Difference between context switching in processes and threads
        • Information of the current process during context switching
      • Interprocess Communication (IPC)
        • Cases where IPC is used
        • Process address space in IPC Shared Memory technique
        • Types of IPC
  • COMPUTER SCIENCE
    • Computer Architecture 101
      • 3 components of a computer
      • RAM vs ROM
      • CPU vs GPU
      • SIMD
      • Two's complement
      • Harvard Architecture vs. von Neumann Architecture
      • The structure of a CPU.
      • Instruction cycle (CPU operation method)
      • Instruction pipelining
      • Bus
      • Memory area
      • Memory hierarchy structure
        • Reason for using memory hierarchy structure
      • Cache memory
      • L1, L2, L3 Cache
      • Locality of reference (cache)
      • Fixed-point vs Floating-point
        • epresentation of infinity and NaN (Not a Number) in floating-point
      • RISC vs CISC
      • Hamming code
      • Compiler
      • Linking
      • Compiler vs Interpreter
      • Mutex vs Semaphore
      • 32bit CPU and 64bit CPU
      • Local vs Static Variable
      • Page
  • Programming Paradigm
    • Declarative vs Imperative
  • JPA, QueryDsl
    • why fetchResults() is deprecated
  • PYTHON
    • Icecream
  • FASTAPI
    • Template Page
  • LINUX
    • Template Page
  • DATA STRUCTURE
    • Counting Sort
    • Array vs Linked List
  • GIT, Github
    • git clone, invalid path error
  • INFRA
    • Template Page
  • AWS
    • Server Log Archive Pipeline
    • Image Processing using Lambda
  • DOCKER
    • Docker and VM
    • Python Executable Environment
    • Docker commands
  • docker-compose
    • Kafka, Multi Broker
  • KUBERNATES
    • !Encountered Errors
      • my-sql restarts
      • kafka producer: disconnected
    • Kubernetes Components
    • Helm
      • Helm commands
    • Pod network
    • Service network
      • deployment.yaml
      • services.yaml
    • Service type
      • Cluster IP
      • NodePort
    • service-name-headless?
    • kube-proxy
  • GraphQL
    • Template Page
  • WEB
    • Template Page
  • Reviews
    • Graphic Intern Review
    • Kakao Brain Pathfinder Review
    • JSCODE 자바 1기 Review
  • 😁Dev Jokes
    • Image
      • Plot twist
      • Priorities
      • SQL join guide
      • Google is generous
      • Genie dislikes cloud
      • buggy bugs
      • last day of unpaid internship
      • what if clients know how to inspect
      • its just game
      • how i wrote my achievement on resume
      • self explanatory
      • chr(sum(range(ord(min(str(not))))))
Powered by GitBook
On this page
  • 스레드
  • 스레드의 구조
  • 멀티스레딩
  • 동시성(Concurrency)
  • 결론
  1. Books
  2. CS Note for Interview
  3. Ch3. Operating System

3.3.6 Threads and Multithreading

메모리: 스레드와 멀티스레딩

3.3.6 스레드와 멀티스레딩

스레드

스레드는 프로세스의 실행 가능한 가장 작은 단위입니다. 프로세스는 여러 스레드를 가질 수 있으며, 각각의 스레드는 프로세스의 코드, 데이터, 힙 영역을 공유합니다. 그러나 각 스레드는 독립적인 스택을 가지고 있습니다.

스레드의 구조

  • 코드 영역: 모든 스레드가 공유하는 실행 코드.

  • 데이터 영역: 전역 변수와 정적 변수가 저장되는 영역.

  • 힙 영역: 동적 메모리가 할당되는 영역으로, 모든 스레드가 공유합니다.

  • 스택 영역: 각 스레드가 독립적으로 가지고 있는 영역으로, 함수 호출과 관련된 정보(매개변수, 반환 주소, 지역 변수 등)를 저장합니다.

프로세스와 멀티스레드 기반 프로세스의 메모리 구조

lua코드 복사+------------------------+  +------------------------+
| 프로세스 상태            |  | 프로세스 상태            |
+------------------------+  +------------------------+
| 코드 영역               |  | 코드 영역                |
+------------------------+  +------------------------+
| 데이터 영역             |  | 데이터 영역               |
+------------------------+  +------------------------+
| 힙 영역                 |  | 힙 영역                 |
+------------------------+  |------------------------|
| 스택 영역               |  | 스레드1 상태             |
+------------------------+  | 스택 영역               |
                            |------------------------|
                            | 스레드2 상태            |
                            | 스택 영역               |
                            +------------------------+
                            | 스레드3 상태             |
                            | 스택 영역               |
                            +------------------------+

멀티스레딩

멀티스레딩은 프로세스 내에서 여러 작업을 여러 스레드로 처리하는 기법입니다. 스레드끼리 서로 자원을 공유하기 때문에 효율성이 높아집니다. 예를 들어, 웹 서버의 경우 클라이언트의 요청을 처리할 때 매번 새로운 프로세스를 생성하는 대신 스레드를 생성하여 처리함으로써 자원을 효율적으로 사용할 수 있습니다.

멀티스레딩의 주요 장점은 다음과 같습니다:

  • 효율성: 자원을 공유하므로 메모리 사용이 효율적입니다.

  • 응답성: 여러 작업을 동시에 수행할 수 있어 응답 시간이 단축됩니다.

  • 자원 공유: 코드, 데이터, 힙 영역을 공유하여 메모리 사용량을 줄입니다.

그러나 멀티스레딩에는 동기화 문제가 발생할 수 있습니다. 여러 스레드가 동일한 자원에 접근할 때 경합이 발생하면, 데이터 불일치가 발생할 수 있습니다. 이를 방지하기 위해 다음과 같은 동기화 기법을 사용합니다:

  • 뮤텍스(Mutex): 한 번에 하나의 스레드만 자원에 접근할 수 있도록 하는 락(Lock)입니다.

  • 세마포어(Semaphore): 동시에 접근할 수 있는 스레드의 수를 제한하는 기법입니다.

  • 모니터(Monitor): 뮤텍스와 조건 변수를 포함하여 상호 배제와 조건 동기화를 제공하는 기법입니다.

동시성(Concurrency)

동시성은 여러 독립적인 작업을 작은 단위로 나누어 동시에 실행되는 것처럼 보이게 하는 것을 의미합니다. 멀티스레딩을 통해 동시성을 구현할 수 있으며, 이는 시스템의 효율성과 응답성을 높이는 데 중요한 역할을 합니다. 예를 들어, 웹 브라우저의 렌더러 프로세스는 멀티스레딩을 활용하여 여러 작업을 동시에 처리합니다.

웹 브라우저의 렌더러 프로세스에는 다음과 같은 스레드가 포함될 수 있습니다:

  • 메인 스레드: 주요 로직을 처리합니다.

  • 워커 스레드: 백그라운드 작업을 처리합니다.

  • 컴포지터 스레드: 화면을 구성합니다.

  • 래스터 스레드: 이미지를 처리합니다.

웹 브라우저의 렌더러 프로세스를 예로 들어 멀티스레드 구조

+---------------+ +-------------+
| 메인 스레드    | | 워커 스레드   |
+---------------+ +-------------+
        |                |
        v                v
+---------------+ +-------------+
| 컴포지터 스레드 | | 래스터 스레드 |
+---------------+ +-------------+

결론

스레드와 멀티스레딩은 프로그램의 성능과 효율성을 높이는 중요한 기법입니다. 스레드는 프로세스 내에서 실행되는 독립적인 단위로, 멀티스레딩을 통해 여러 작업을 동시에 처리할 수 있습니다. 이를 통해 시스템의 응답성과 처리 속도를 향상시킬 수 있으며, 적절한 동기화 기법을 통해 동시성 문제를 해결할 수 있습니다.

Previous3.3.5 MultiprocessingNext3.3.7 Shared Resources and Critical Sections

Last updated 10 months ago