❓
물음표살인마 블로그
  • README
  • ALGORITHM
    • Sieve of Eratosthenes
    • Round Up
    • Binary Search
    • Union Find
    • Sorting Array
    • Lcm, Gcd
  • TechTalk Review
    • Template
  • Books
    • CS Note for Interview
      • Ch1. Design Pattern & Programming paradigm
        • 1.1.1 Singleton Pattern
        • 1.1.2 Factory Pattern
        • 1.1.4 Observer Pattern
        • 1.1.5 Proxty Pattern & Proxy Server
        • 1.1.8 Model-View-Controller Pattern
        • 1.2.1 Declarative and Functional Programming
        • 1.2.2 Object Oriented Programming
      • Ch2. Network
        • 2.2.1 TCP/IP Four-Layer Model
        • 2.2.1-1 TCP 3, 4 way handshake
        • 2.3 Network Devices L4, L7
        • 2.4.1 ARP, RARP
        • 2.4.2 Hop By Hop Communication
        • 2.4.3 IP Addressing Scheme
      • Ch3. Operating System
        • 3.1.1 Roles and Structure of Operating Systems
        • 3.2.1 Memory Hierarchy
        • 3.2.2 Memory Management
        • 3.3.1 Processes and Compilation Process
        • 3.3.3 Memory Structure of a Process
        • 3.3.4 Process Control Block (PCB)
        • 3.3.5 Multiprocessing
        • 3.3.6 Threads and Multithreading
        • 3.3.7 Shared Resources and Critical Sections
        • 3.3.8 Deadlock
        • 3.4 CPU Scheduling Algorithm
      • Ch4. Database
        • 4.1 Database Basic
        • 4.2 Normalization
        • 4.3 Transaction and Integrity
        • 4.4 Types of Databases
        • 4.5 Indexes
        • 4.6 Types of Joins
        • 4.7 Principles of Joins
      • Ch5. Data Structure
    • Learning the Basics of Large-Scale System Design through Virtual Interview Cases
      • 1. Scalability based on user counts(1/2)
      • 1. Scalability based on user counts(2/2)
      • 2.Back-of-the-envelope estimation
      • 3. Strategies for System Design Interviews
      • 4. Rate Limiter
      • 5. Consistent Hashing
      • 6. Key-Value System Design
      • 7. Designing a Unique ID Generator for Distributed Systems
      • 8. Designing a URL Shortener
      • 9. Designing a Web Crawler
      • 10. Notification System Design
      • 11. Designing a News Feed System
      • 12. Chat System Design
      • 13. AutoComplete
      • 14. Design YouTube
      • 15. Design Google Drive
      • Loadbalancer Algorithms
      • Cache tier
      • CDN, Content Delivery Network
      • Stateless Web tier
    • Computer System A programmer's perspective
    • Effective Java
      • Item 1. Consider Static Factory Methods Instead of Constructors
      • Item 2. Consider a Builder When Faced with Many Constructor Parameters
      • Item 3. Ensure Singleton with Private Constructor or Enum Type
      • Item 4. Enforce Noninstantiability with a Private Constructor
      • Item 5. Prefer Dependency Injection to Hardwiring Resources
      • Item 6. Avoid Creating Unnecessary Objects
      • Item 7. Eliminate Obsolete Object References
      • Item 8. Avoid Finalizers and Cleaners
      • Item 9.Prefer try-with-resources to try-finally
      • Item10. Adhering to General Rules When Overriding equals
        • Handling Transitivity Issues
        • Ensuring Consistency
      • Item11. Override hashCode When You Override equals
      • Item12. Always Override toString
        • Always Override toString
      • Item13. Override Clone Judiciously
      • Item14. Consider Implementing Comparable
      • Item15. Minimize the Accessibility of Classes and Members
      • Item16. Accessor Methods Over Public Fields
      • Item17. Minimize Mutability
      • Item18. Composition over inherentance
      • Item19. Design and Document for Inheritance, or Else Prohibit It
      • Item20. Prefer Interfaces to Abstract Classes
      • Item21. Design Interfaces with Implementations in Mind
      • Item22. Use Interfaces Only to define Types
      • Item23. Prefer Class Hierarchies to Tagged Classes
      • Item24. Favor Static Member Classes Over Non-Static
      • Item28. Use Lists Instead of Arrays
      • Item29. Prefer Generic Types
      • Item30. Favor Generic Methods
    • Head First Design Patterns
      • Ch1. Strategy Pattern
      • Ch2. Observer Pattern
        • Ver1. Ch2. Observer Pattern
      • Ch3. Decorator Pattern
        • Ch3. Decorator Pattern
      • Ch4. Factory Pattern
      • Ch5. Singleton Pattern
      • Ch6. Command Pattern
      • Ch7. Adapter and Facade Pattern
      • Ch8. Template Method Pattern
    • Digging Deep into JVM
      • Chapter 2. Java Memory Area & Memory Overflow
      • Chapter 3. Garbage Collector & Memory Allocation Strategy (1/2)
      • Chapter 3. Garbage Collector & Memory Allocation Strategy (2/2)
      • Chapter 5. Optimization Practice
      • Chapter 6. Class file structure
      • Chapter 8. Bytecode Executor Engine (1/2)
  • Interview Practices
    • Restful API Practices
      • Url Shortener API
      • Event Ticket Reservation API
      • Course Management API
      • Search posts by tags API
      • Online Code platform API
      • Simple Task Management API
      • Event Participation API
      • Review System API
      • Car management API
      • Online Library
    • Tech Review
      • if(kakao)
        • Kakao Account Cache Migration / if(kakao)2022
        • Improving the Anomaly Detection System for KakaoTalk Messaging Metrics / if(kakao) 2022
        • Standardizing API Case Handling Without Redeployment / if(kakaoAI)2024
        • JVM warm up / if(kakao)2022
    • Naver Computer Science
      • Process & Thread
      • TCP & UDP
      • Spring & Servlet
      • Filter & Interceptor & AOP
      • Equals() & ==
      • Dependency Injection
      • Object Oriented Programming
  • F-Lab
    • Week1
      • Client & Server
      • HTTP
      • TCP/UDP
      • REST API
      • Questions
        • Object Oriented Programming
        • HTTP
        • Process & Thread
        • Data Structure
    • Week2
      • OSI 7 layer
      • Web vs WAS
    • Week3
      • RDB vs NoSQL
      • RDB Index
      • Cache
      • Redis
      • Messaging Queue
    • Week4
      • Project - Ecommerce
    • Week5
      • ERD - 1
    • Week6
      • Ecommerce - 2
      • Role
      • pw hashing && Salt
      • CreatedAt, ModifiedAt
      • JWT
      • Copy of ERD - 1
    • Week7
      • Vault (HashiCorp Vault)
    • Week 8
      • Api Endpoints
    • Week10
      • Product Create Workflow
  • TOY Project
    • CodeMentor
      • Implementation of Kafka
      • Project Improvement (Architectural Enhancements)
      • Communication between servers in msa
  • JAVA
    • MESI protocol in CAS
    • CAS (Compare and Set)
    • BlockingQueue
    • Producer & Consumer
    • Synchronized && ReentrantLock
    • Memory Visibility
    • Checked vs Unchecked Exception
    • Thread
    • Batch delete instead of Cascade
    • Java Questions
      • Week 1(1/2) - Basic Java
      • Week 1(2/2) - OOP
      • Week 2(1/2) - String, Exception, Generic
      • Week2(2/2) Lambda, Stream, Annotation, Reflection
      • Week3(1/2) Collections
      • Week3(2/2) Threads
      • Week4 Java Concurrency Programming
      • Week5 JVM & GC
    • Java 101
      • JVM Structure
      • Java Compiles and Execution Method
      • Override, Overload
      • Interface vs Abstract Class
      • Primitive vs Object Type
      • Identity and equality
      • String, StringBuilder, StringBuffer
      • Checked Exceptions and Unchecked Exceptions
      • Java 8 methods
      • Try-with-reources
      • Strong Coupling and Loose Coupling
      • Serialization and Deserialization
      • Concurrency Programming in Java
      • Mutable vs Immutable
      • JDK vs JRE
  • SPRING
    • DIP. Dependency Inversion Principal
    • Ioc container, di practice
    • @Transactional
    • Proxy Pattern
    • Strategy Pattern
    • Template Method Pattern
    • using profile name as variable
    • Spring Questions
      • Spring Framework
      • Spring MVC & Web Request
      • AOP (Aspect-Oriented Programming)
      • Spring Boot
      • ORM & Data Access
      • Security
      • ETC
  • DATABASE
    • Enhancing Query Performance & Stability - User list
    • Ensuring Data Consistency, Atomicity and UX Optimization (feat.Firebase)
    • Redis: Remote Dictionary Server
    • Database Questions
      • Week1 DBMS, RDBMS basics
      • Week2 SQL
      • Week3 Index
      • Week4 Anomaly, Functional Dependency, Normalization
      • Week5 DB Transaction, Recovery
    • Normalization
      • 1st Normal Form
      • 2nd Normal Form
      • 3rd Normal Form
  • NETWORK
    • HTTP & TCP head of line blocking
    • HTTP 0.9-3.0
    • Blocking, NonBlocking and Sync, Async
    • Network Questions
      • Week1 Computer Network Basic
      • Week2(1/3) Application Layer Protocol - HTTP
      • Week2(2/3) Application Layer Protocol - HTTPS
      • Week2(3/3) Application Layer Protocol - DNS
      • Week3 Application Layer
      • Week4 Transport Layer - UDP, TCP
      • Week5 Network Layer - IP Protocol
    • Network 101
      • https://www.google.com
      • TCP vs UDP
      • Http vs Https
      • TLS Handshake 1.2
      • HTTP Method
      • CORS & SOP
      • Web Server Software
  • OS
    • Operating System Questions
      • Week1 OS & How Computer Systems Work
      • Week2(1/2) Process
      • Week2(2/2) Thread
      • Week3 CPU Scheduling
      • Week4 Process Synchronize
      • Week5 Virtual Memory
    • Operating System 101
      • Operating system
        • The role of the operating system
        • The composition of the operating system.
      • Process
        • In Linux, are all processes except the initial process child processes?
        • Zombie process, orphan process
        • (Linux) Daemon process
        • Process address space
        • Where are uninitialized variables stored?
        • Determination of the size of the Stack and Heap
        • Access speed of Stack vs Heap
        • Reason for memory space partitioning
        • Process of compiling a process
        • sudo kill -9 $CURRENT_PID
      • Thread
        • Composition of a thread's address space
      • Process vs Thread
        • Creation of processes and threads in Linux
      • Multiprocessing
        • Web Browser
        • Implementation of multiprocessing
        • Application areas of multiprocessing
      • Multithreading
        • Application areas of multithreading
      • Interrupt
        • HW / SW Interrupt
        • Method of handling interrupts
        • Occurrence of two or more interrupts simultaneously
      • Polling
      • Dual Mode
        • Reason for distinguishing between user mode and kernel mode
      • System call
        • Differentiation between system calls
        • Types of system calls
        • Execution process of a system call
      • Process Control Block (PCB)
        • PCB의 구조
        • 쓰레드는 PCB를 갖고 있을까?
        • 프로세스 메모리 구조
      • Context switching
        • Timing of context switching
        • Registers saved during context switching
        • Context switching in processes
        • Context switching in threads
        • Difference between context switching in processes and threads
        • Information of the current process during context switching
      • Interprocess Communication (IPC)
        • Cases where IPC is used
        • Process address space in IPC Shared Memory technique
        • Types of IPC
  • COMPUTER SCIENCE
    • Computer Architecture 101
      • 3 components of a computer
      • RAM vs ROM
      • CPU vs GPU
      • SIMD
      • Two's complement
      • Harvard Architecture vs. von Neumann Architecture
      • The structure of a CPU.
      • Instruction cycle (CPU operation method)
      • Instruction pipelining
      • Bus
      • Memory area
      • Memory hierarchy structure
        • Reason for using memory hierarchy structure
      • Cache memory
      • L1, L2, L3 Cache
      • Locality of reference (cache)
      • Fixed-point vs Floating-point
        • epresentation of infinity and NaN (Not a Number) in floating-point
      • RISC vs CISC
      • Hamming code
      • Compiler
      • Linking
      • Compiler vs Interpreter
      • Mutex vs Semaphore
      • 32bit CPU and 64bit CPU
      • Local vs Static Variable
      • Page
  • Programming Paradigm
    • Declarative vs Imperative
  • JPA, QueryDsl
    • why fetchResults() is deprecated
  • PYTHON
    • Icecream
  • FASTAPI
    • Template Page
  • LINUX
    • Template Page
  • DATA STRUCTURE
    • Counting Sort
    • Array vs Linked List
  • GIT, Github
    • git clone, invalid path error
  • INFRA
    • Template Page
  • AWS
    • Server Log Archive Pipeline
    • Image Processing using Lambda
  • DOCKER
    • Docker and VM
    • Python Executable Environment
    • Docker commands
  • docker-compose
    • Kafka, Multi Broker
  • KUBERNATES
    • !Encountered Errors
      • my-sql restarts
      • kafka producer: disconnected
    • Kubernetes Components
    • Helm
      • Helm commands
    • Pod network
    • Service network
      • deployment.yaml
      • services.yaml
    • Service type
      • Cluster IP
      • NodePort
    • service-name-headless?
    • kube-proxy
  • GraphQL
    • Template Page
  • WEB
    • Template Page
  • Reviews
    • Graphic Intern Review
    • Kakao Brain Pathfinder Review
    • JSCODE 자바 1기 Review
  • 😁Dev Jokes
    • Image
      • Plot twist
      • Priorities
      • SQL join guide
      • Google is generous
      • Genie dislikes cloud
      • buggy bugs
      • last day of unpaid internship
      • what if clients know how to inspect
      • its just game
      • how i wrote my achievement on resume
      • self explanatory
      • chr(sum(range(ord(min(str(not))))))
Powered by GitBook
On this page
  • 1. CAS (Compare and Set)
  • 1.1. 멀티스레드 상황
  • 2. Lock vs CAS
  • 2.1. Lock
  • 2.2. CAS
  • 3. CAS 구현
  • 3.1. 락 구현1 (bad)
  • 3.2. 락 구현2 (good)
  • 4. CAS 단점
  1. JAVA

CAS (Compare and Set)

CAS - 동기화와 원자적 연산

1. CAS (Compare and Set)

락을 사용하지 않고 원자적인 연산을 수행할 수 있는 방법. Lock-free 기법이라고도 함. CAS는 내부 연산 속도가 빠를 수록 락에 비해 성능이 우수하지만, 내부 연산 속도가 느리면 락에 비해 성능이 더 느려질 수 있음

package thread.cas;

import java.util.concurrent.atomic.AtomicInteger;

public class CasMainV1 {
    public static void main(String[] args) {
        AtomicInteger atomicInteger = new AtomicInteger(0);
        System.out.println("start value = " + atomicInteger.get());

        boolean result1 = atomicInteger.compareAndSet(0, 1);
        System.out.println("result1 = " + result1 + ", value = " + atomicInteger.get());

        boolean result2 = atomicInteger.compareAndSet(0, 1);
        System.out.println("result2 = " + result2 + ", value = " + atomicInteger.get());
    }
}
start value = 0
result1 = true, value = 1
result2 = false, value = 1
  • CompareAndSet을 사용하는 경우, 내부적으로 원자적으로 계산하게 됨

    • 원래는 조회하고 값을 갱신하는 작업은 원자적이지 않지만, CompareAndSet은 이를 원자적으로 수행. 이게 가능한 이유는 하드웨어에서 제공하는 기능 덕분

    • CompareAndSet(0, 1) -> value 값이 0 이면 1로 변경하는 것. 그렇기 때문에 1번째 연산은 성공, 2번째 연산은 실패를 리턴.

package thread.cas;

import java.util.concurrent.atomic.AtomicInteger;

import static util.MyLogger.log;

public class CasMainV2 {
    public static void main(String[] args) {
        AtomicInteger atomicInteger = new AtomicInteger(0);
        System.out.println("start value = " + atomicInteger.get());

        int resultValue1 = incrementAndGet(atomicInteger);
        System.out.println("resultValue1 = " + resultValue1 + ", value = " + atomicInteger.get());

        int resultValue2 = incrementAndGet(atomicInteger);
        System.out.println("resultValue2 = " + resultValue2 + ", value = " + atomicInteger.get());

    }

    private static int incrementAndGet(AtomicInteger atomicInteger) {
        int getValue;
        boolean result;
        do {
            getValue = atomicInteger.get();
            log("getValue = " + getValue);
            result = atomicInteger.compareAndSet(getValue, getValue + 1);
            log("result = " + result);
        } while (!result);
        return getValue + 1;
    }
}
start value = 0
21:40:33:603 [     main] getValue = 0
21:40:33:605 [     main] result = true
resultValue1 = 1, value = 1
21:40:33:609 [     main] getValue = 1
21:40:33:610 [     main] result = true
resultValue2 = 2, value = 2
  • 둘다 성공할 수 있는 이유는, atomicInteger.get()을 사용하여 값을 읽고, getValue+1을 사용하여 값을 메모리에 갱신. 만약 실패하면 성공할때까지 계속 시도.

1.1. 멀티스레드 상황

package thread.cas;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;

import static util.MyLogger.log;
import static util.ThreadUtils.sleep;

public class CasMainV3 {

    private static final int THREAD_COUNT = 2;
    public static void main(String[] args) throws InterruptedException {
        AtomicInteger atomicInteger = new AtomicInteger(0);
        System.out.println("start value = " + atomicInteger.get());

        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                incrementAndGet(atomicInteger);
            }
        };

        List<Thread> threads = new ArrayList<>();
        for (int i = 0; i < THREAD_COUNT; i++) {
            Thread thread = new Thread(runnable);
            threads.add(thread);
            thread.start();
        }

        for (Thread thread : threads) {
            thread.join();
        }

        int result = atomicInteger.get();
        System.out.println(atomicInteger.getClass().getSimpleName() + " result = " + result);
    }

    private static int incrementAndGet(AtomicInteger atomicInteger) {
        int getValue;
        boolean result;
        do {
            getValue = atomicInteger.get();
            sleep(100);
            log("getValue = " + getValue);
            result = atomicInteger.compareAndSet(getValue, getValue + 1);
            log("result = " + result);
        } while (!result);
        return getValue + 1;
    }
}
start value = 0
21:46:43:093 [ Thread-1] getValue = 0
21:46:43:093 [ Thread-0] getValue = 0
21:46:43:096 [ Thread-1] result = true
21:46:43:096 [ Thread-0] result = false
21:46:43:209 [ Thread-0] getValue = 1
21:46:43:209 [ Thread-0] result = true
AtomicInteger result = 2
  • 정상적으로 2로 증가한 것을 확인

  • AtomicInteger에서 제공하는 incrementAndGet() 코드는 직접 작성한 incrementAndGet()코드와 똑같이 CAS를 활용하도록 작성되어있음.

  • CAS는 락 충돌이 자주 발생하지 않는 (낙관적 락) 상황에서 락을 획득, 반납하고 WAITING, RUNNABLE이 되는 시간이 없어서 오버헤드가 줄어듬.

2. Lock vs CAS

2.1. Lock

  • 비관적 접근

  • 데이터가 접근하기 전에 항상 락을 획득

  • 다른 스레드의 접근을 막음

2.2. CAS

  • 낙관적 접근

  • 락을 사용하지 않고 데이터에 바로 접근

  • 충돌이 발생하면 그때 재시도

3. CAS 구현

3.1. 락 구현1 (bad)

package thread.cas.spinlock;

import static util.MyLogger.log;

public class SpinLockMain {
    public static void main(String[] args) {
        SpinLockBad spinLock = new SpinLockBad();

        Runnable task = new Runnable() {
            @Override
            public void run() {
                spinLock.lock();
                try {
                    log("비즈니스 로직 실행");
                } finally {
                    spinLock.unlock();
                }
            }
        };

        Thread t1 = new Thread(task, "Thread-1");
        Thread t2 = new Thread(task, "Thread-2");

        t1.start();
        t2.start();
    }
}
package thread.cas.spinlock;

import static util.MyLogger.log;
import static util.ThreadUtils.sleep;

public class SpinLockBad {
    private volatile boolean lock = false;

    public void lock() {
        log("락 획득 시도");
        while(true) {
            if (!lock) {
                sleep(100);
                lock =true;
                break;
            } else {
                // 락을 획득할 때 까지 스핀 대기
                log("락 획득 실패, 스핀 대기");
            }
        }
        log("락 획득 성공");
    }

    public void unlock() {
        lock = false;
        log("락 반납 완료");
    }
}
  • 위 상황에서는 당연히 원자적 연산이 아니기 떄문에 문제가 발생.

    • 락 사용 여부 확인

    • 락의 값 변경

만약 이 두 코드를 하나로 묶어서 원자적으로 처리 한다면?

CAS 연산을 사용하면 두 연산을 하나로 묶어서 처리 가능. 락의 사용 여부를 확인하고, 그 값이 기대하는 값과 같다면 변경. CAS 연산이 필요한 시기이다.

3.2. 락 구현2 (good)

package thread.cas.spinlock;

import java.util.concurrent.atomic.AtomicBoolean;

import static util.MyLogger.log;
import static util.ThreadUtils.sleep;

public class SpinLock {
    private final AtomicBoolean lock = new AtomicBoolean(false);

    public void lock() {
        log("락 획득 시도");
        while(!lock.compareAndSet(false, true)) {
            // 락을 획득할 때 까지 스핀 대기
            log("락 획득 실패, 스핀 대기");
        }
        log("락 획득 성공");
    }

    public void unlock() {
        lock.set(false);
        log("락 반납 완료");
    }
}
21:56:37:725 [ Thread-1] 락 획득 시도
21:56:37:725 [ Thread-2] 락 획득 시도
21:56:37:729 [ Thread-1] 락 획득 성공
21:56:37:729 [ Thread-2] 락 획득 실패, 스핀 대기
21:56:37:729 [ Thread-1] 비즈니스 로직 실행
21:56:37:729 [ Thread-2] 락 획득 실패, 스핀 대기
21:56:37:730 [ Thread-1] 락 반납 완료
21:56:37:730 [ Thread-2] 락 획득 성공
21:56:37:730 [ Thread-2] 비즈니스 로직 실행
21:56:37:730 [ Thread-2] 락 반납 완료
while(
    if (!lock) {
        lock = true;
    }
}

->
while (lock.compareAndSet(false, true)) {}
  • CAS 연산을 사용하는 AtomicBoolean을 사용했을때, 락 사용 여부확인과 락의 값 변경이 원자적으로 됨

  • 결과를 보면 락이 잘 적용된 것을 확인.

4. CAS 단점

  • 스핀락으로 성능 저하 발생.

    • 데이터의 캐시라인 독점(MESI프로토콜의 Modified)이 해제될때까지 bus snooping을 하는 스핀으로 인한 성능 저하.

    • Modified가 해제되고, 스핀중이던 모든 스레드들이 동시에 연산을 하면서 발생하는 성능 저하. 하나를 제외한 나머지 연산들은 의미가 없는 연산임.

PreviousMESI protocol in CASNextBlockingQueue

Last updated 20 days ago

자세한건 원자적으로 동작하는 방식을 참고:

https://wonjoon.gitbook.io/joons-til/java/mesi-protocol-in-cas