❓
물음표살인마 블로그
  • README
  • ALGORITHM
    • Sieve of Eratosthenes
    • Round Up
    • Binary Search
    • Union Find
    • Sorting Array
    • Lcm, Gcd
  • TechTalk Review
    • Template
  • Books
    • CS Note for Interview
      • Ch1. Design Pattern & Programming paradigm
        • 1.1.1 Singleton Pattern
        • 1.1.2 Factory Pattern
        • 1.1.4 Observer Pattern
        • 1.1.5 Proxty Pattern & Proxy Server
        • 1.1.8 Model-View-Controller Pattern
        • 1.2.1 Declarative and Functional Programming
        • 1.2.2 Object Oriented Programming
      • Ch2. Network
        • 2.2.1 TCP/IP Four-Layer Model
        • 2.2.1-1 TCP 3, 4 way handshake
        • 2.3 Network Devices L4, L7
        • 2.4.1 ARP, RARP
        • 2.4.2 Hop By Hop Communication
        • 2.4.3 IP Addressing Scheme
      • Ch3. Operating System
        • 3.1.1 Roles and Structure of Operating Systems
        • 3.2.1 Memory Hierarchy
        • 3.2.2 Memory Management
        • 3.3.1 Processes and Compilation Process
        • 3.3.3 Memory Structure of a Process
        • 3.3.4 Process Control Block (PCB)
        • 3.3.5 Multiprocessing
        • 3.3.6 Threads and Multithreading
        • 3.3.7 Shared Resources and Critical Sections
        • 3.3.8 Deadlock
        • 3.4 CPU Scheduling Algorithm
      • Ch4. Database
        • 4.1 Database Basic
        • 4.2 Normalization
        • 4.3 Transaction and Integrity
        • 4.4 Types of Databases
        • 4.5 Indexes
        • 4.6 Types of Joins
        • 4.7 Principles of Joins
      • Ch5. Data Structure
    • Learning the Basics of Large-Scale System Design through Virtual Interview Cases
      • 1. Scalability based on user counts(1/2)
      • 1. Scalability based on user counts(2/2)
      • 2.Back-of-the-envelope estimation
      • 3. Strategies for System Design Interviews
      • 4. Rate Limiter
      • 5. Consistent Hashing
      • 6. Key-Value System Design
      • 7. Designing a Unique ID Generator for Distributed Systems
      • 8. Designing a URL Shortener
      • 9. Designing a Web Crawler
      • 10. Notification System Design
      • 11. Designing a News Feed System
      • 12. Chat System Design
      • 13. AutoComplete
      • 14. Design YouTube
      • 15. Design Google Drive
      • Loadbalancer Algorithms
      • Cache tier
      • CDN, Content Delivery Network
      • Stateless Web tier
    • Computer System A programmer's perspective
    • Effective Java
      • Item 1. Consider Static Factory Methods Instead of Constructors
      • Item 2. Consider a Builder When Faced with Many Constructor Parameters
      • Item 3. Ensure Singleton with Private Constructor or Enum Type
      • Item 4. Enforce Noninstantiability with a Private Constructor
      • Item 5. Prefer Dependency Injection to Hardwiring Resources
      • Item 6. Avoid Creating Unnecessary Objects
      • Item 7. Eliminate Obsolete Object References
      • Item 8. Avoid Finalizers and Cleaners
      • Item 9.Prefer try-with-resources to try-finally
      • Item10. Adhering to General Rules When Overriding equals
        • Handling Transitivity Issues
        • Ensuring Consistency
      • Item11. Override hashCode When You Override equals
      • Item12. Always Override toString
        • Always Override toString
      • Item13. Override Clone Judiciously
      • Item14. Consider Implementing Comparable
      • Item15. Minimize the Accessibility of Classes and Members
      • Item16. Accessor Methods Over Public Fields
      • Item17. Minimize Mutability
      • Item18. Composition over inherentance
      • Item19. Design and Document for Inheritance, or Else Prohibit It
      • Item20. Prefer Interfaces to Abstract Classes
      • Item21. Design Interfaces with Implementations in Mind
      • Item22. Use Interfaces Only to define Types
      • Item23. Prefer Class Hierarchies to Tagged Classes
      • Item24. Favor Static Member Classes Over Non-Static
      • Item28. Use Lists Instead of Arrays
      • Item29. Prefer Generic Types
      • Item30. Favor Generic Methods
    • Head First Design Patterns
      • Ch1. Strategy Pattern
      • Ch2. Observer Pattern
        • Ver1. Ch2. Observer Pattern
      • Ch3. Decorator Pattern
        • Ch3. Decorator Pattern
      • Ch4. Factory Pattern
      • Ch5. Singleton Pattern
      • Ch6. Command Pattern
      • Ch7. Adapter and Facade Pattern
      • Ch8. Template Method Pattern
    • Digging Deep into JVM
      • Chapter 2. Java Memory Area & Memory Overflow
      • Chapter 3. Garbage Collector & Memory Allocation Strategy (1/2)
      • Chapter 3. Garbage Collector & Memory Allocation Strategy (2/2)
      • Chapter 5. Optimization Practice
      • Chapter 6. Class file structure
      • Chapter 8. Bytecode Executor Engine (1/2)
  • Interview Practices
    • Restful API Practices
      • Url Shortener API
      • Event Ticket Reservation API
      • Course Management API
      • Search posts by tags API
      • Online Code platform API
      • Simple Task Management API
      • Event Participation API
      • Review System API
      • Car management API
      • Online Library
    • Tech Review
      • if(kakao)
        • Kakao Account Cache Migration / if(kakao)2022
        • Improving the Anomaly Detection System for KakaoTalk Messaging Metrics / if(kakao) 2022
        • Standardizing API Case Handling Without Redeployment / if(kakaoAI)2024
        • JVM warm up / if(kakao)2022
    • Naver Computer Science
      • Process & Thread
      • TCP & UDP
      • Spring & Servlet
      • Filter & Interceptor & AOP
      • Equals() & ==
      • Dependency Injection
      • Object Oriented Programming
  • F-Lab
    • Week1
      • Client & Server
      • HTTP
      • TCP/UDP
      • REST API
      • Questions
        • Object Oriented Programming
        • HTTP
        • Process & Thread
        • Data Structure
    • Week2
      • OSI 7 layer
      • Web vs WAS
    • Week3
      • RDB vs NoSQL
      • RDB Index
      • Cache
      • Redis
      • Messaging Queue
    • Week4
      • Project - Ecommerce
    • Week5
      • ERD - 1
    • Week6
      • Ecommerce - 2
      • Role
      • pw hashing && Salt
      • CreatedAt, ModifiedAt
      • JWT
      • Copy of ERD - 1
    • Week7
      • Vault (HashiCorp Vault)
    • Week 8
      • Api Endpoints
    • Week10
      • Product Create Workflow
  • TOY Project
    • CodeMentor
      • Implementation of Kafka
      • Project Improvement (Architectural Enhancements)
      • Communication between servers in msa
  • JAVA
    • MESI protocol in CAS
    • CAS (Compare and Set)
    • BlockingQueue
    • Producer & Consumer
    • Synchronized && ReentrantLock
    • Memory Visibility
    • Checked vs Unchecked Exception
    • Thread
    • Batch delete instead of Cascade
    • Java Questions
      • Week 1(1/2) - Basic Java
      • Week 1(2/2) - OOP
      • Week 2(1/2) - String, Exception, Generic
      • Week2(2/2) Lambda, Stream, Annotation, Reflection
      • Week3(1/2) Collections
      • Week3(2/2) Threads
      • Week4 Java Concurrency Programming
      • Week5 JVM & GC
    • Java 101
      • JVM Structure
      • Java Compiles and Execution Method
      • Override, Overload
      • Interface vs Abstract Class
      • Primitive vs Object Type
      • Identity and equality
      • String, StringBuilder, StringBuffer
      • Checked Exceptions and Unchecked Exceptions
      • Java 8 methods
      • Try-with-reources
      • Strong Coupling and Loose Coupling
      • Serialization and Deserialization
      • Concurrency Programming in Java
      • Mutable vs Immutable
      • JDK vs JRE
  • SPRING
    • DIP. Dependency Inversion Principal
    • Ioc container, di practice
    • @Transactional
    • Proxy Pattern
    • Strategy Pattern
    • Template Method Pattern
    • using profile name as variable
    • Spring Questions
      • Spring Framework
      • Spring MVC & Web Request
      • AOP (Aspect-Oriented Programming)
      • Spring Boot
      • ORM & Data Access
      • Security
      • ETC
  • DATABASE
    • Enhancing Query Performance & Stability - User list
    • Ensuring Data Consistency, Atomicity and UX Optimization (feat.Firebase)
    • Redis: Remote Dictionary Server
    • Database Questions
      • Week1 DBMS, RDBMS basics
      • Week2 SQL
      • Week3 Index
      • Week4 Anomaly, Functional Dependency, Normalization
      • Week5 DB Transaction, Recovery
    • Normalization
      • 1st Normal Form
      • 2nd Normal Form
      • 3rd Normal Form
  • NETWORK
    • HTTP & TCP head of line blocking
    • HTTP 0.9-3.0
    • Blocking, NonBlocking and Sync, Async
    • Network Questions
      • Week1 Computer Network Basic
      • Week2(1/3) Application Layer Protocol - HTTP
      • Week2(2/3) Application Layer Protocol - HTTPS
      • Week2(3/3) Application Layer Protocol - DNS
      • Week3 Application Layer
      • Week4 Transport Layer - UDP, TCP
      • Week5 Network Layer - IP Protocol
    • Network 101
      • https://www.google.com
      • TCP vs UDP
      • Http vs Https
      • TLS Handshake 1.2
      • HTTP Method
      • CORS & SOP
      • Web Server Software
  • OS
    • Operating System Questions
      • Week1 OS & How Computer Systems Work
      • Week2(1/2) Process
      • Week2(2/2) Thread
      • Week3 CPU Scheduling
      • Week4 Process Synchronize
      • Week5 Virtual Memory
    • Operating System 101
      • Operating system
        • The role of the operating system
        • The composition of the operating system.
      • Process
        • In Linux, are all processes except the initial process child processes?
        • Zombie process, orphan process
        • (Linux) Daemon process
        • Process address space
        • Where are uninitialized variables stored?
        • Determination of the size of the Stack and Heap
        • Access speed of Stack vs Heap
        • Reason for memory space partitioning
        • Process of compiling a process
        • sudo kill -9 $CURRENT_PID
      • Thread
        • Composition of a thread's address space
      • Process vs Thread
        • Creation of processes and threads in Linux
      • Multiprocessing
        • Web Browser
        • Implementation of multiprocessing
        • Application areas of multiprocessing
      • Multithreading
        • Application areas of multithreading
      • Interrupt
        • HW / SW Interrupt
        • Method of handling interrupts
        • Occurrence of two or more interrupts simultaneously
      • Polling
      • Dual Mode
        • Reason for distinguishing between user mode and kernel mode
      • System call
        • Differentiation between system calls
        • Types of system calls
        • Execution process of a system call
      • Process Control Block (PCB)
        • PCB의 구조
        • 쓰레드는 PCB를 갖고 있을까?
        • 프로세스 메모리 구조
      • Context switching
        • Timing of context switching
        • Registers saved during context switching
        • Context switching in processes
        • Context switching in threads
        • Difference between context switching in processes and threads
        • Information of the current process during context switching
      • Interprocess Communication (IPC)
        • Cases where IPC is used
        • Process address space in IPC Shared Memory technique
        • Types of IPC
  • COMPUTER SCIENCE
    • Computer Architecture 101
      • 3 components of a computer
      • RAM vs ROM
      • CPU vs GPU
      • SIMD
      • Two's complement
      • Harvard Architecture vs. von Neumann Architecture
      • The structure of a CPU.
      • Instruction cycle (CPU operation method)
      • Instruction pipelining
      • Bus
      • Memory area
      • Memory hierarchy structure
        • Reason for using memory hierarchy structure
      • Cache memory
      • L1, L2, L3 Cache
      • Locality of reference (cache)
      • Fixed-point vs Floating-point
        • epresentation of infinity and NaN (Not a Number) in floating-point
      • RISC vs CISC
      • Hamming code
      • Compiler
      • Linking
      • Compiler vs Interpreter
      • Mutex vs Semaphore
      • 32bit CPU and 64bit CPU
      • Local vs Static Variable
      • Page
  • Programming Paradigm
    • Declarative vs Imperative
  • JPA, QueryDsl
    • why fetchResults() is deprecated
  • PYTHON
    • Icecream
  • FASTAPI
    • Template Page
  • LINUX
    • Template Page
  • DATA STRUCTURE
    • Counting Sort
    • Array vs Linked List
  • GIT, Github
    • git clone, invalid path error
  • INFRA
    • Template Page
  • AWS
    • Server Log Archive Pipeline
    • Image Processing using Lambda
  • DOCKER
    • Docker and VM
    • Python Executable Environment
    • Docker commands
  • docker-compose
    • Kafka, Multi Broker
  • KUBERNATES
    • !Encountered Errors
      • my-sql restarts
      • kafka producer: disconnected
    • Kubernetes Components
    • Helm
      • Helm commands
    • Pod network
    • Service network
      • deployment.yaml
      • services.yaml
    • Service type
      • Cluster IP
      • NodePort
    • service-name-headless?
    • kube-proxy
  • GraphQL
    • Template Page
  • WEB
    • Template Page
  • Reviews
    • Graphic Intern Review
    • Kakao Brain Pathfinder Review
    • JSCODE 자바 1기 Review
  • 😁Dev Jokes
    • Image
      • Plot twist
      • Priorities
      • SQL join guide
      • Google is generous
      • Genie dislikes cloud
      • buggy bugs
      • last day of unpaid internship
      • what if clients know how to inspect
      • its just game
      • how i wrote my achievement on resume
      • self explanatory
      • chr(sum(range(ord(min(str(not))))))
Powered by GitBook
On this page
  • 결합
  • 강한 결합
  • 장점:
  • 느슨한 결합
  • 장점:
  • 느슨한 결합 구현
  • 인터페이스 사용
  • 팩토리 패턴
  • 의존성 주입
  1. JAVA
  2. Java 101

Strong Coupling and Loose Coupling

강한 결합과 느슨한 결합

결합이라는 개념은 클래스나 모듈 간의 의존성을 나타내는 개념입니다. 결합도에 따라 유지보수성, 확장성, 코드의 재사용성이 달라집니다.

결합

결합은 하나의 클래스나 모듈이 닫른 클래스나 모듈에 얼마나 의존하는지를 의미합니다. 두 개의 클래스가 서로 직접적으로 많은 정보를 주고 받거나, 한 클래스가 다른 클래스의 내부 구조를 많이 알고 있을수록 결합이 강하다고 할 수 있습니다. 반면, 서로의 내부 구현에 대한 정보가 적고, 인터페이스나 추상화를 통해 상호 작용하면 결합이 느슨하다고 할 수 있습니다.

강한 결합
class Engine {
    public void start() {
        System.out.println("Engine started");
    }
}

class Car {
    private Engine engine = new Engine();

    public void startCar() {
        engine.start();
    }
}

위의 코드에서 Car 클래스는 Engine 클래스와 강하게 결합되어 있습니다. Car 클래스는 Engine 클래스의 인스턴스를 직접 생성하고, start 메서드를 호출합니다. 만약 Engine 클래스의 내부 구조나 메서드가 변경되면, Car 클래스도 이에 맞춰 수정해야 합니다. 이는 강한 결합의 대표적인 예시입니다.

느슨한 결합
interface Engine {
    void start();
}

class DieselEngine implements Engine {
    public void start() {
        System.out.println("Diesel Engine started");
    }
}

class Car {
    private Engine engine;

    public Car(Engine engine) {
        this.engine = engine;
    }

    public void startCar() {
        engine.start();
    }
}

위의 코드에서는 Car 클래스가 Engine 인터페이스에 의존하고 있으며, 실제 구현체(DieselEngine)는 Car 클래스의 생성자를 통해 주입됩니다. 이 방식은 느슨한 결합을 구현한 예시입니다. Engine 인터페이스의 구현체를 변경해도 Car 클래스는 영향을 받지 않으며, 다양한 엔진 타입을 쉽게 교체할 수 있습니다.

강한 결합

두 클래스가 서로 깊이 연관되어 있음을 의미합니다. 한 클래스가 다른 클래스의 인스턴스를 직접 생성하고, 해당 인스턴스의 메서드를 호출하거나 내부 구조에 강하게 의존할 때 발생합니다. 이러한 상황에서는 하나의 클래스에 변경이 생기면 해당 클래스와 강하게 결합된 다른 클래스도 영향을 받아 수정이 필요하게 됩니다.

장점:

  • 유연성 부족

  • 테스트 어려움: 특정 클래스가 다른 클래스와 강하게 결합돼 있으면, 단위 테스트를 수행하기 어렵습니다. (예: Car 클래스를 테스트하려면 Engine 클래스의 동작도 함께 검증해야 합니다.)

  • 재사용성 저하

느슨한 결합

느슨한 결합은 클래스 간의 의존성을 최소화하는 것을 목표로 합니다. 이때 클래스는 직접적으로 서로의 인스턴스를 생성하거나 내부 구조에 의존하는 대신, 인터페이스나 추상 클래스를 통해 상호작용합니다. 느슨한 결합을 통해 시스템은 더 유연해지고, 클래스 간의 변경이 다른 클래스에 미치는 영향을 최소화할 수 있습니다.

장점:

  • 유연성 향상

  • 테스트 용이

  • 재사용성 증가

느슨한 결합 구현

인터페이스 사용

인터페이스 사용
interface PaymentProcessor {
    void processPayment(double amount);
}

class CreditCardProcessor implements PaymentProcessor {
    public void processPayment(double amount) {
        System.out.println("Processing credit card payment: " + amount);
    }
}

class PaypalProcessor implements PaymentProcessor {
    public void processPayment(double amount) {
        System.out.println("Processing PayPal payment: " + amount);
    }
}

class PaymentService {
    private PaymentProcessor processor;

    public PaymentService(PaymentProcessor processor) {
        this.processor = processor;
    }

    public void pay(double amount) {
        processor.processPayment(amount);
    }
}

위의 예시에서 PaymentProcessor 인터페이스는 결제 처리에 필요한 공통된 메서드를 정의합니다. PaymentService 클래스는 PaymentProcessor 인터페이스에 의존하므로, 결제 처리 방식이 바뀌어도 PaymentService 클래스는 변경될 필요가 없습니다. 이렇게 인터페이스를 사용하면 클래스 간의 결합도를 낮출 수 있습니다.

팩토리 패턴

팩토리 패턴은 객체 생성 로직을 캡슐화하여 클라이언트 코드와 객체 생성 방식을 분리하는 디자인 패턴입니다. 이를 통해 클래스 간의 결합을 줄이고, 객체 생성 방법을 유연하게 변경할 수 있습니다.

팩토리 패턴
interface Engine {
    void start();
}

class DieselEngine implements Engine {
    public void start() {
        System.out.println("Diesel Engine started");
    }
}

class ElectricEngine implements Engine {
    public void start() {
        System.out.println("Electric Engine started");
    }
}

class EngineFactory {
    public static Engine createEngine(String type) {
        if (type.equals("diesel")) {
            return new DieselEngine();
        } else if (type.equals("electric")) {
            return new ElectricEngine();
        }
        throw new IllegalArgumentException("Unknown engine type");
    }
}

class Car {
    private Engine engine;

    public Car(String engineType) {
        this.engine = EngineFactory.createEngine(engineType);
    }

    public void startCar() {
        engine.start();
    }
}

위의 예시에서 EngineFactory 클래스는 Engine 객체의 생성 로직을 캡슐화하여 Car 클래스와 엔진의 구체적인 구현을 분리합니다. Car 클래스는 더 이상 Engine 클래스의 구체적인 타입을 알 필요가 없으며, 엔진 타입이 변경되어도 Car 클래스는 수정되지 않습니다.

의존성 주입

의존성 주입(Dependency Injection, DI)은 느슨한 결합을 구현하는 가장 강력한 방법 중 하나입니다. DI는 객체의 의존성을 외부에서 주입받아, 클래스 간의 결합도를 낮춥니다.

  • 생성자 주입

  • 세터 주입

  • 필드 주입

PreviousTry-with-reourcesNextSerialization and Deserialization

Last updated 9 months ago